Novel promoter sequence required for manganese regulation of manganese peroxidase isozyme 1 gene expression in Phanerochaete chrysosporium.
نویسندگان
چکیده
Manganese peroxidase (MnP) is a major, extracellular component of the lignin-degrading system produced by the wood-rotting basidiomycetous fungus Phanerochaete chrysosporium. The transcription of MnP-encoding genes (mnps) in P. chrysosporium occurs as a secondary metabolic event, triggered by nutrient-nitrogen limitation. In addition, mnp expression occurs only under Mn2+ supplementation. Using a reporter system based on the enhanced green fluorescent protein gene (egfp), we have characterized the P. chrysosporium mnp1 promoter by examining the effects of deletion, replacement, and translocation mutations on mnp1 promoter-directed egfp expression. The 1,528-bp mnp1 promoter fragment drives egfp expression only under Mn2+-sufficient, nitrogen-limiting conditions, as required for endogenous MnP production. However, deletion of a 48-bp fragment, residing 521 bp upstream of the translation start codon in the mnp1 promoter, or replacement of this fragment with an unrelated sequence resulted in egfp expression under nitrogen limitation, both in the absence and presence of exogenous Mn2+. Translocation of the 48-bp fragment to a site 120 bp downstream of its original location resulted in Mn2+-dependent egfp expression under conditions similar to those observed with the wild-type mnp1 promoter. These results suggest that the 48-bp fragment contains at least one Mn2+-responsive cis element. Additional promoter-deletion experiments suggested that the Mn2+ element(s) is located within the 33-bp sequence at the 3' end of the 48-bp fragment. This is the first promoter sequence containing a Mn2+-responsive element(s) to be characterized in any eukaryotic organism.
منابع مشابه
Manganese-dependent Peroxidase from Phanerochaete chrysosporium
A cDNA clone encoding a manganese-dependent peroxidase from the filamentous fungus Phanerochaete chrysosporium was isolated and characterized. The clone, AMP-1, was isolated by screening a X g t l l expression library with polyclonal antibodies raised against a purified manganese-dependent peroxidase (isozyme H4, PI 4.5). The XMP-1 cDNA sequence predicts a mature protein containing 358 amino a...
متن کاملHomologous expression of recombinant manganese peroxidase in Phanerochaete chrysosporium.
The promoter region of the glyceraldehyde-3-phosphate dehydrogenase gene (gpd) was used to drive expression of mnp1, the gene encoding Mn peroxidase isozyme 1, in primary metabolic cultures of Phanerochaete chrysosporium. A 1,100-bp fragment of the P. chrysosporium gpd promoter region was fused upstream of the mnp1 gene to construct plasmid pAGM1, which contained the Schizophyllum commune ade5 ...
متن کاملEfficient expression of a Phanerochaete chrysosporium manganese peroxidase gene in Aspergillus oryzae.
A manganese peroxidase gene (mnp1) from Phanerochaete chrysosporium was efficiently expressed in Aspergillus oryzae. Expression was achieved by fusing the mature cDNA of mnp1 with the A. oryzae Taka amylase promoter and secretion signal. The 3' untranslated region of the glucoamylase gene of Aspergillus awamori provided the terminator. The recombinant protein (rMnP) was secreted in an active fo...
متن کاملA reporter gene construct for studying the regulation of manganese peroxidase gene expression.
The orotidylate decarboxylase (ODase) gene (ura1) from Schizophyllum commune was utilized as a reporter for studying Mn regulation of the manganese peroxidase (MnP) gene (mnp) from the lignin-degrading basidiomycete Phanerochaete chrysosporium. A 1,500-bp fragment of the mnp1 promoter was fused upstream of the coding region of the ODase gene in a plasmid (pAMO) containing the S. commune ade5 ge...
متن کاملHeterologous Expression of Phanerochaete chrysoporium Glyoxal Oxidase and its Application for the Coupled Reaction with Manganese Peroxidase to Decolorize Malachite Green
cDNA of the glx1 gene encoding glyoxal oxidase (GLX) from Phanerochaete chrysosporium was isolated and expressed in Pichia pastoris. The recombinant GLX (rGLX) produces H(2)O(2) over 7.0 nmol/min/mL using methyl glyoxal as a substrate. Use of rGLX as a generator of H(2)O(2) improved the coupled reaction with recombinant manganese peroxidase resulting in decolorization of malachite green up to 1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eukaryotic cell
دوره 3 3 شماره
صفحات -
تاریخ انتشار 2004